Bremen

U

'

Massively Parallel Algorithms
Dense Matrix Algorithms

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

. CG
i VR l-l

eeeeee

= Given matrix A, and vector x, compute

y = AX

U Warming Up: Matrix-Vector Product ‘

" One of the most important operations in linear algebra algorithms
= Called SGEMV in BLAS (Basic Linear Algebra Subroutines)

= First approach: one thread per row

|

Ali,*]

e

\ A4

y[i] Y
N

x[]

= Observation: all threads use the same data from x — shared memory

G. Zachmann Massively Parallel Algorithms SS May 2014

Matrix Algorithms

eeeee

Algorithm for First Attempt

...

<N
£,

multMatrixVector(const float * A, const float * x,

const int n columns, float * y)

shared x cache[THREADS PER BLOCK];
yi =0.0; // output of each thread
int i = threadIdx.x + blockIdx.x * blockDim.x; // row index

for (int j = 0; jJ < n _columns; j += THREADS PER BLOCK)
{

// new segment of columns - fill cache

x cache[threadIdx.x] = x[J + threadIdx.x];

// now process this segment of columns

for (int k = 0; k < THREADS PER BLOCK; k ++) {
Aij = A[i*n _columns + j+k 1;
yi += Aij*x cache[k];

4 Y
} Block of 7 >
) threads ™ | | ‘}Block-
y[i] = yi; || size
} ! * i
. j
= For sake of clarity, we assume V v
M, N = multiple of block-size ‘H(_J/

G. Zachmann Massively Parallel Algorithms SS May 2014 Blocksize

e

eeeeee

= The "natural" (C) way to store matrices
is called row major order

= Ajjis stored at memory address A + i*n + j
= For a conventional (sequential)

matrix-vector-multiplication algorithm,
this is good:

A 4

1211311415
16[17]118(19

for ((int 1 = 0; 1 < M; i ++) {

F————]

float yi = 0.0;

for (int j = 0; j < N; J ++)
yi += A[i][J] * x[]J];

yli]l = yi;

cachelines

G. Zachmann Massively Parallel Algorithms SS May 2014

Matrix Algorithms

eeeeee

W 2D Array Access Patterns (row major vs column major)

= Consider the following piece in a kernel (e.g., matrix x vector):

for (int j = 0; j < blockDim.x; j ++) {
float Aij = A[treadIdx.x][]j]:
do something with it ...

Element Offsets

oo NI CREMEERR -
. B, layout of
Althreadldx.x][0]=...; 32 [33 | ... |63 | or
é{th:deldi.ﬂH;..; o e el a matrix in C !

4 ¢ 1 1 ! | | ! | | | |
0 32 64 96 128 160 192 224 256 288 320 352 384 416

» Problem: uncoalesced access pattern

= Elements read on 15t SIMT access: 0, 32, 64, ...
= Elements read on 2" SIMT access: 1, 33, 65, ...

= Also, extra data will be transferred in order to fill the cache line size

= Generally, most natural access pattern for direct port of a C/C++ code!

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 5

eeeeee

Transposed 2D Array Access Pattern

= Column major := store a logical row in a physical column

“ Le., Ago = A[O][0], Ao — A[11[0] , Aoz — A[2][0] , ... T
A1o — A[OI[1], A1 — A[T][1], A2 — A[2][1], EREIE
Axog — A[O][Z]) ees 3 | 8 | 13|18

= In general: Ajis storedat A + i + j*n

= Transform the code . _ _ _
for (int j = 0; j < blockDim.x; j ++) {

to column major: float Aij = A[j] [treadIdx.x];
. do something with it ...

= Now, we have coalesced accesses:
= Elements read on 15t SIMT access: O, 1, 2, ..., 31

= Elements Element Offsets
read on 277 e 0 IN |..|3"'N
SIMT access: [NOI vl v e 1 [N+t | | 31N+

32 33 . 63 [AUIGIEEEIEVERE 1 thread per column il

I I S S S S SN SN S S S S R
G. Zachmann ERWEVEEIE) 32 64 96 128 160 192 224 256 288 320 352 384 416

eeeee

Y Modified Matrix*Vector Algorithm for Column-Major Matrix Storage

multMatrixVector(const float * A, const float * x,

const int n columns , float * y)
{
__shared x cache[THREADS PER BLOCK];
yi =0.0; // output of each thread
int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
for (int j = 0; j < n_columns; j += THREADS PER BLOCK)
{
// new segment of columns - fill cache
X cache[threadIdx.x] = x[j + threadIdx.x];
// now process this segment of columns
for (int k = 0; k < THREADS PER BLOCK; k ++) ({
Aij = A[1 + (j+k)*n _columns];
yi += Aij * x cachel[k];
}
}
Ca s Note: n columns is still the
ylal = yi; number of columns of the logical matrix,
} not the number of columns of the physical matrix!
G. Zachmann Massively Parallel Algorithms ss May 2014 Matrix Algorithms

...

<N

za
e

eeeeee

= Note: from now on, we will use row-major notation
(just for sake of clarity)!

= But we will assume that an actual implementation uses column-major!
= We expect you to transform everything to column-major
= Start with small matrices that you can check "by hand"

= Or implement your code first on the CPU and test it there

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

I.l
L, CG =
VR =

= Do we keep all hardware resources of the GPU busy?

= Assume Fermi [2011] hardware:
= 14 SMs, each supports 1536 active threads
" [f M <21504 =14%x1536 — some SMs are idle!

" |dea for the case M < 21504 and N "not too small":

= Use 2D partitioning of our problem/domain

segments of a row that will be multiplied to x_cache

Cache
size

N

segments
of x
that will be

stored in

- (N 4 N
Block of >
threads{ Blogk 0,0 Blpck O,1 S
M= Blogk 1,0
~ \. y, \. 2z \, J
\ \ J
Y Y
Cache size N
G. Zachmann Massively Parallel Algorithms SS May 2014

/ x_cache

Matrix Algorithms

cc

VR =

= All possible domain decomposition variants:
1. One thread per row
2. Several threads per row (previous slide)

3. Several rows per thread (one thread computes several y[i]'s at the
same time)

4. Several threads, several rows (version 2 & 3 combined)

= Which version is best in which case? (YMMV)

Logarithmic mesh Best Kernel
10— 10° ‘ ‘ ‘ ‘ ‘ 10°
10 Several rows per thread 1ol 1000 Several rows per thread
,,, < 21000
10 10't 10* threads
g g :
e 3 % 9 3 e 3 %
H* 10 = Several threads per row H* 10°; $ 10°% 2 : : :
. 2 Il Il g Several threads per row
S B 0o p = =]
10° § 10 10 §
i = <
: [} o
101l 5 10'k]]] | 10 3 : Several threads,|
: Several threads, several cols several cols
100 b - i) 1 ' - 1 00 i i i i i 1 00 i i | i
10° 10’ 10° 10° 10* 10° 10° 10° 10’ 10° 10° 10* 10° 10° 10° 10’ 10° 10° 10* 10° 10°
N = #columns N = #columns N = #columns

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 10

Bremen 4 L
e

= Computational performance that can be achieved [2011]:

CUBLAS v3.2 MAGMA v1.0.0-rc5 Our kemel

10°

10°

10*

10°
10° 10°

Gflops

Performance of matrix-vector multiplication (SGEMV) over matrices of size mxn

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 11

eeeeee

Y Complexities

= Sequential version: 0(n?) (assuming n=m)
= Parallel version: O(n) parallel time

= Assuming n parallel threads

= Arithmetic intensity:

= Assume following simplified version:

load vector x completely into fast memory
for i =1 ... n: // assuming m = n
load row i of A into fast memory
for =1 ... n:
yi += A[i][§] * x[J]
store yi in y[i]

= Number of slow memory references = f = 2n + n?

= Number of arithmetic operations = 0 = 2n?

= Arithmetic intensity @ = 2 &~ 2 — memory limited
y £ Y

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 12

eeeeee

= Remark: actually, SGEMV in BLAS computes Y = aAx + [y

= Should be fairly straight-forward to modify our kernels

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

13

eeeeee

W Matrix-Matrix Multiplication L

= Called SGEMM in BLAS
= Given matrices A and B, compute P=A‘B

= For sake of simplicity, we'll assume

A and B are square matrices of size nxn

= Sequential algorithm:

Ao Il ¥

for 1

for j

s =

for :

s += A[i] [k] * B[k][]]
P[i][]] = s

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 14

eeeeee

= Complexity: O(n3)

= Arithmetic intensity:

for i
for
s

Ao Il ¥

J

for

S

+= A[i] [k] * B[k][]]

P[i][]] = s

= Even worse than matrix-vector mult.!

= Upper bound, w/o proof, at least with iterative = non-recursive algorithms:

" Problem: no data re-use!

G. Zachmann

Massively Parallel Algorithms

2n3

a=—¢cO0

3n2

SS

May 2014

(n)

Matrix Algorithms

I.l
L, CG =
VR =

15

eeeeee

U Naive Parallel Matrix Multiplication

...

cG
VR

= Approach:
= Use matrix-vector-multiplication idea

= Run one thread per row of A:

for =1 ... n:
read column j of B into fast memory (B cache)
foreach i =1 ... n run one thread in parallel:
s =0.0
for k=1 ... n:
s += A[i] [k] * B _cache[k][]]
P[1][]3] = s

= Arithmetic intensity:
2n

a=—-7=2

= Not much better ®

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 16

eeeeee

U Blocked (Tiled) Matrix Multiplication ‘o

= Remember linear algebra class: the procedure

n
Pij = E aik bij
k=1

works also for sub-blocks of the matrices

n/m
l
Pij = E Ak Byj By
k=1 L
where A, Byj € R™*™ Ak Py

are block matrices of size m

= Assumption: n = multiple of m
= In production code, you'd have to <

cope with any matrix size!

- Lots of nitty-gritty details ...

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 17

eeeeee

cc

VR =

= New approach (2D partitioning): m
—

= For each sub-matrix Pjj, run one
block of m? threads . ————
= Each thread in the block Aik

computes one pj; .
P..

= The kernel runs in phases 1 []
Copy blocksinto T
= Each phase consists of: fast memry B
1. Load blocks Aj, Byjinto shared

/|

memory

- Each thread loads one ajj, one bj;

—_—

2. Perform "row x column" over
block

3. Accumulate partial results

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 18

eeeee

..

e T T T hddhded
g L

. el
6

= Pseudo code:

let b = n/m // = number of blocks in each dimension
foreach i = 1...b, jJj =1...b run one block in parallel:
let p = 0.0 // = thread-local accumulator
for k=1 ... b:

load sub-matrices A(i,k) and B(k,j) into shared memory
— Asub , Bsub
for 1 =1...m:

p += Asub[tid.x] [1] * Bsub[l][tid.y]

P[I,J] +=p // I,J = per-thread global indices into P
~~
dim3 threadsPerBlock (m,m) ;
dim3 n blocks(n/m, n/m);
multMatrices<<< n blocks, threadsPerBlock >>>(A, B, P, n); »

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 19

eeeeee

= Previous optimization is called blocking/tiling (copy optimization)

" How should matrices A and B be stored?

= Remember: at the beginning of each phase: each thread loads one a;; &
one bj;

= Store matrices in blocked form, in order to achieve coalesced
memory access:

Original matrix Reorganized
(numbers are addresses) into blocks
O| 4|8]12 Ol 2|8]10
1 (5] 9|13 1 (3] 9|11
2| 6 |10|14 4 (6 |12(14
37 |11]15 517 [13]15

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

20

eeeeee

= Arithmetic intensity:
= P consists of b2 blocks
= For each block Pjj, we load b blocks of A and b blocks of B
= Overall, our algorithm loads 2b3 many blocks

= One block load = m? float loads

| b p— ﬂ
m
3 3
= Overall, our algorithm loads 2(%) m? = 2~ many floats
2n°
= Therefore, a = —5 = m
on’
m

= Consequence: make m large

= Limit: all three blocks Pjj, Ajk, Bkj, must fitin shared memory

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

22

eeeeee

= Calculating m:

= Assume Kepler-GPU: ~ 2 TFlops/sec = 2:1012 FLOPs/sec
~ 200 GB/sec = 200-10° B/sec

= Choose m such that we achieve peak bandwidth & peak FLOPs/sec

FLops # Flops/sec 2:1012 Flops/sec
" m=a= = = = 40
Loads # Loads/sec 2(210 1109 B/sec
R

1 Load = 4 Bytes

= Note: these are very crude estimations, but good for a starting point
where to search for the sweet spot

= Consequence: size of shared memory should be at least
3402 - 4 Bytes = 19.2 kB

= Otherwise, we would be bandwidth limited

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

23

eeeeee

Y

Effects of Block Size

%]

O
O

G. Zachmann

200
180
160
140
120
100
80
60
40
20

untiled 2x2

Massively Parallel Algorithms

4x4

SS

8x8 12x12 14x14 15x15 16x16

Block size

May 2014

Matrix Algorithms

24

eeeee

DGEMM3.2 +DGEMM 3.1 DGEMM MKL 4 THREADS

Large perf
variance in
cuBLAS 3.1

MKL 10.2.3

PG AR N s
O °"<§’ FE @A Q E
Dimension (m =n =k)

Juration

[http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance]

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

7. cc
VR %

25

eeeeee

Y

Limitations / Optimality

= Tiling/blocking only works, if the arithm. operation is associative

= Arithmetic intensity, a, is bounded by size of shared memory, S:

a~m< §
=3

n3

= Qur algorithm performs O(—) many load operations

VS

= Note: in a sense, our blocked matrix multiplication algorithm is a
way to schedule memory transfers and floating point operations

= Theorem (Hong & Kung, 1981; w/o proof):
Any schedule of conventional matrix multiplication must transfer

O(;;) many floats between slow and fast memory.

= |n this sense, blocked matrix multiplication is optimal

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 26

eeeeee

U Strassen's Algorithm ;

= All "traditional" algorithms need O(n3) FLOPs
= Strassen's algorithm: O(n?2-81)
= Recursive algorithm!
= See 2"d semester's course "algorithms and data structures"
= Current world record: O(n2-379)
= Strassen on the GPU?

= Probably not worth it (recursion / complex control flow)

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 27

Gabriel Zachmann
Optional

eeeeee

U Recap: Strassen's Algorithm

= Task: compute C=A-B, A, BecR™"
= |dea : divide-and-conquer

= Partition A, B, C in 2x2 block matrices

C11 Ci2) _ (@11 @12\ (bi1 bi2

Co1 C22 a1 anp by1 boo
. nyn
mit a,-j,b,-j,c,-jeR2 2

= Multiplication gives:

C11 = ai1bi1 + ai12b21

Cop = an1bi11 + axoboo

= Which amounts to 8 matrix multiplications of size g X

n
2

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

Gabriel Zachmann
Optional

eeeeee

" The trick: compute some (seemingly tedious) intermediate products
Q1 = (a11 + az2)(b11 + b22)
Q2 = (821 + a22)b11
Q3 = a11(b12 — b22)
QR4 = azo(—b11 + b21)
Qs = (a11 + ai2)boo
Qe = (—a11 + az1)(b11 + b12)
Q7 = (a12 — a22)(b21 + b22)
" Now we can compute the ¢j's like so:

C11 = Q1+ Q4 — Qs + Q7
Cl2 = Q2 + Q4
C21 = Q3+ Qs
Coo = R1+ Q3 — Q2+ Qs

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 29

Gabriel Zachmann
Optional

eeeeee

= Computational complexity:
T(n)=7T(2) +cn” € O(n**")

= Assumption here: multiplications are the expensive operation

= How would this perform on a GPU?

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 30

Gabriel Zachmann
Optional

eeeeee

W Application: All Pairs Shortest Paths (APSP)

= Given: directed graph G = (V, E) and a distance function

dist: E—-R
where V = set of all vertices (nodes), |V| = n, and E = set of edges

" Goal: compute nxn matrix D = dj; that stores for each pair (v;, vj)
the shortest path from v; to v;in graph G

= Example:

X
T~
—
/
Y
N —
w | o
(08
o | o |
- | »
N |

0
4

412 |1 5]15]10]6

518 (11|11 6|0

Shortest path matrix D

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

31

eeeeee

Y ' The Adjacency Matrix Representation of Directed Graphs

" The adjacency matrix A represents the distance function dist

= Ais an nxn matrix A = (6;;) where

fdist(v,-, v;), if(vi,v;) € E
5,‘j — < oo, if (V,', VJ) §é E
0, if i = j
1 2 3 4 5
110 3|8 || 4
2|0 0|0]| 1|7
4|1 2|0 | 5] 0]
S5|o|o|oo| 6|0

G. Zachmann Massively Parallel Algorithms SS May 2014

Adjacency matrix

Matrix Algorithms

7 cc

VR =

32

eeeeee

Y The Shortest Paths Property

= We will now extend the simple, edge-based distance function to
a distance function dist' on paths

= Define
0, 1=y

dist'(py) = {5-- i #J
ij

= Consider a shortest path p¥; from v; to v; such that [pf| < k , i.e,,
p*; can have most k edges

= Let (v}, v)) be the last edge of path p",-j

= Then, there must be a shortest path p,-kl_1 from v;to v; (optimal
substructurel!)

= Therefore,
dist'(pf‘j) = dist'(p5 ') + 0y

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

33

eeeeee

Y A Simple Algorithm for APSP

= Given the adjacency matrix A, compute a series of matrices
D=A D2, ... D2 D"1 where matrix DX = dist'(pf‘j) contains
lengths of shortest paths in G with at most k edges

= Example:
1 2 3 4 5 1 2 3 4 5
11038 || 4 110|3|8|4]|4
2|0 [0 || 1]7 213|10(6|1|7
3[40 |o0|oo 3|0 4]0]|5(11
42| | 5[0 e 412(5]5|0]|6
5| ||| 6|0 5({8 | |11[{6 |0
Adjacency matrix Matrix D?

= Final matrix D! contains the actual shortest paths in G

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 34

eeeee

Y Bt

VR =

" The algorithm:

A = adjacency matrix
Dl = A
for k = 2 to n-1:
D* = ExtendPaths (D*!, A)

return Dk

ExtendPaths(D, A)

MatrixMultiply(B, A)

E = e, is an nxn distance matrix C = c;; is an nxn result matrix
for i =1 to n: for i =1 to n:
for j =1 to n: for j =1 to n:
e;; = d;; c..=20

ij
for k =1 to n:
Cijy = C;; + aik'bkj
return C

for k =1 to n:
e;; = min{eij, d, + 6kj)
return D

= Notice the similarity with matrix multiplication!

= We can adapt our fast GPU-based matrix multiplication code to solve
the APSP problem quite easily

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 35

eeeeee

W A Word on Sparse I\/Iatricqutionm

= Just some remarks

= Frequent case: sparse band matrices
= Represent matrix as a number of vectors

= Devise new parallel algorithm (one thread per row is inefficient)

Matrix 2 vectors
(‘A H
N¢ N E...E
\ \‘ f k E E
~ 1 i
N

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

cc

36

VR =

Gabriel Zachmann
Optional

eeeee

..

za
e

<N

Optional

= "Unstructured" sparse matrices:

= Most common storage format is Compressed Sparse Row (CSR)

struct {
int n _rows; // number of rows
int nnz; // total number of non-zero elements

int row_start[n rows+l];
int col idx[nnz];
double wval[NNZ];

}

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 37

Gabriel Zachmann
Optional

eeeee

Y Optional St

= Many more kinds of sparse matrices

= Specialized representation / algorithms for each of them?

T T T T T T T T T
it“t.: 3;3 : $
233002 4 4 0 .
o3 *38,, i
10;. N A AR oA
. g
e+ 300::0:“ .o .
20_ : + * + i
e 0% 8 * ¢
K3 3 2 o
PO ”i‘;‘o e
30 - . g.% %303 7
‘? 00’ N ofif:é‘ .
. PRARS 424 e
40 F “oi‘& oi" 3 -
o+ e t.*
" »oﬁ% .’gg . o, . .
50 B ettt e
’&?fgi N L
;:3 A +* 8 .o
60 LT :
030’03 ¥ 3‘0 0”0‘230 i * i:
) . e
0F 0»“ see TN LTt 4
MDD R R OB .
MR : ¢ + % . .
P RS e d ORI .
g0 oi:& 0003% -
‘e o.‘:% +
o seEs e -
.
.o " 28 3%}
100k 1 1 1 1 M 1’ M 1 ’.3’? + |+ “1 m.o;

0 10 20 30 40 a0 60 70 a0 30 100

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 38

Gabriel Zachmann
Optional

eeeeee

U Summary

= Simple performance models can aid in understanding

= Two ratios are key:

= Arithmetic (computational) intensity = Irﬂggz

- "flops" = floating point operations, "mops" = memory operations

Tflops/sec
GB/sec

= Machine balance =

G. Zachmann Massively Parallel Algorithms SS May 2014

Matrix Algorithms

I.l
L, CG =
VR =

39

