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= Given matrix A, and vector x, compute

y = AX

U  Warming Up: Matrix-Vector Product ‘

" One of the most important operations in linear algebra algorithms
= Called SGEMV in BLAS (Basic Linear Algebra Subroutines)

= First approach: one thread per row

|

Ali,*]

e

\ A4

y[i] Y
N

x[]

= Observation: all threads use the same data from x — shared memory
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Algorithm for First Attempt

...

<N
£,

multMatrixVector( const float * A, const float * x,

const int n columns, float * y )

shared x cache[ THREADS PER BLOCK ];
yi =0.0; // output of each thread
int i = threadIdx.x + blockIdx.x * blockDim.x; // row index

for ( int j = 0; jJ < n _columns; j += THREADS PER BLOCK )
{

// new segment of columns - fill cache

x cache[threadIdx.x] = x[ J + threadIdx.x ];

// now process this segment of columns

for ( int k = 0; k < THREADS PER BLOCK; k ++ ) {
Aij = A[ i*n _columns + j+k 1;
yi += Aij*x cache[k];

4 Y
} Block of 7 >
) threads ™ | | ‘}Block-
y[i] = yi; || size
} ! * i
. j
= For sake of clarity, we assume V v
M, N = multiple of block-size ‘H(_J/
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= The "natural" (C) way to store matrices
is called row major order

= Ajjis stored at memory address A + i*n + j
= For a conventional (sequential)

matrix-vector-multiplication algorithm,
this is good:

A 4

1211311415
16[17]118(19

for ((int 1 = 0; 1 < M; i ++ ) {

F————]

float yi = 0.0;

for ( int j = 0; j < N; J ++ )
yi += A[i][J] * x[]J];

yli]l = yi;

cachelines
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W 2D Array Access Patterns (row major vs column major)

= Consider the following piece in a kernel (e.g., matrix x vector):

for ( int j = 0; j < blockDim.x; j ++ ) {
float Aij = A[treadIdx.x][]j]:
do something with it ...

Element Offsets

oo NI CREMEERR -
. B, layout of
Althreadldx.x][0]=...; 32 [33 | ... |63 | or
é{th:deldi.ﬂH;..; o e el a matrix in C !

4 ¢ 1 1 ! | | ! | | | |
0 32 64 96 128 160 192 224 256 288 320 352 384 416

» Problem: uncoalesced access pattern

= Elements read on 15t SIMT access: 0, 32, 64, ...
= Elements read on 2" SIMT access: 1, 33, 65, ...

= Also, extra data will be transferred in order to fill the cache line size

= Generally, most natural access pattern for direct port of a C/C++ code!
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Transposed 2D Array Access Pattern

= Column major := store a logical row in a physical column

“ Le., Ago = A[O][0], Ao — A[11[0] , Aoz — A[2][0] , ... T
A1o — A[OI[1], A1 — A[T][1], A2 — A[2][1], ... . EREIE
Axog — A[O][Z] ) ees 3 | 8 | 13|18

= In general: Ajis storedat A + i + j*n

= Transform the code . _ _ _
for ( int j = 0; j < blockDim.x; j ++ ) {

to column major: float Aij = A[j] [treadIdx.x];
. do something with it ...

= Now, we have coalesced accesses:
= Elements read on 15t SIMT access: O, 1, 2, ..., 31

= Elements Element Offsets
read on 277 e 0 IN |..|3"'N
SIMT access:  [NOI vl v e 1 [N+t | | 31N+

32 33 . 63 [AUIGIEEEIEVERE 1 thread per column il

I I S S S S SN SN S S S S R
G. Zachmann ERWEVEEIE ) 32 64 96 128 160 192 224 256 288 320 352 384 416
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Y Modified Matrix*Vector Algorithm for Column-Major Matrix Storage

multMatrixVector( const float * A, const float * x,

const int n columns , float * y )
{
__shared  x cache[ THREADS PER BLOCK ];
yi =0.0; // output of each thread
int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
for ( int j = 0; j < n_columns; j += THREADS PER BLOCK )
{
// new segment of columns - fill cache
X cache[threadIdx.x] = x[ j + threadIdx.x ];
// now process this segment of columns
for ( int k = 0; k < THREADS PER BLOCK; k ++ ) ({
Aij = A[ 1 + (j+k)*n _columns ];
yi += Aij * x cachel[k];
}
}
Ca s Note: n columns is still the
ylal = yi; number of columns of the logical matrix,
} not the number of columns of the physical matrix!
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= Note: from now on, we will use row-major notation
(just for sake of clarity)!

= But we will assume that an actual implementation uses column-major!
= We expect you to transform everything to column-major
= Start with small matrices that you can check "by hand"

= Or implement your code first on the CPU and test it there
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= Do we keep all hardware resources of the GPU busy?

= Assume Fermi [2011] hardware:
= 14 SMs, each supports 1536 active threads
" [f M <21504 =14%x1536 — some SMs are idle!

" |dea for the case M < 21504 and N "not too small":

= Use 2D partitioning of our problem/domain

segments of a row that will be multiplied to x_cache

Cache
size

N

segments
of x
that will be

stored in

- ( N 4 N
Block of >
threads{ Blogk 0,0 Blpck O,1 S
M= Blogk 1,0
~ \. y, \. 2z \, J
\ \ J
Y Y
Cache size N
G. Zachmann Massively Parallel Algorithms SS May 2014

/ x_cache

Matrix Algorithms

# cc

VR =



= All possible domain decomposition variants:
1. One thread per row
2. Several threads per row (previous slide)

3. Several rows per thread (one thread computes several y[i]'s at the
same time)

4. Several threads, several rows (version 2 & 3 combined)

= Which version is best in which case? (YMMV)

Logarithmic mesh Best Kernel
10— 10° ‘ ‘ ‘ ‘ ‘ 10°
10 Several rows per thread 1ol 1000 Several rows per thread
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, < 21000
10 10't 10* threads
g g :
e 3 % 9 3 e 3 %
H* 10 = Several threads per row H* 10°; $ 10°% 2 : : :
. 2 Il Il g Several threads per row
S B 0o p = =]
10° § 10 10 §
i = <
: [} o
101l 5 10'k ] ] ] | 10 3 : Several threads,|
: Several threads, several cols several cols
100 b - i) 1 ' - 1 00 i i i i i 1 00 i i | i
10° 10’ 10° 10° 10* 10° 10° 10° 10’ 10° 10° 10* 10° 10° 10° 10’ 10° 10° 10* 10° 10°
N = #columns N = #columns N = #columns
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= Computational performance that can be achieved [2011]:

CUBLAS v3.2 MAGMA v1.0.0-rc5 Our kemel

10°

10°

10*

10°
10° 10°

Gflops

Performance of matrix-vector multiplication (SGEMV) over matrices of size mxn

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]
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Y  Complexities

= Sequential version: 0(n?) (assuming n=m)
= Parallel version: O(n) parallel time

= Assuming n parallel threads

= Arithmetic intensity:

= Assume following simplified version:

load vector x completely into fast memory
for i =1 ... n: // assuming m = n
load row i of A into fast memory
for =1 ... n:
yi += A[i][§] * x[J]
store yi in y[i]

= Number of slow memory references = f = 2n + n?

= Number of arithmetic operations = 0 = 2n?

= Arithmetic intensity @ = 2 &~ 2 — memory limited
y £ Y
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= Remark: actually, SGEMV in BLAS computes Y = aAx + [y

= Should be fairly straight-forward to modify our kernels

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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W  Matrix-Matrix Multiplication L

= Called SGEMM in BLAS
= Given matrices A and B, compute P=A‘B

= For sake of simplicity, we'll assume

A and B are square matrices of size nxn

= Sequential algorithm:

Ao Il ¥

for 1

for j

s =

for :

s += A[i] [k] * B[k][]]
P[i][]] = s

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 14
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= Complexity: O(n3)

= Arithmetic intensity:

for i
for
s

Ao Il ¥

J

for

S

+= A[i] [k] * B[k][]]

P[i][]] = s

= Even worse than matrix-vector mult.!

= Upper bound, w/o proof, at least with iterative = non-recursive algorithms:

" Problem: no data re-use!

G. Zachmann
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2n3

a=—¢cO0

3n2
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U  Naive Parallel Matrix Multiplication

...

cG
VR

= Approach:
= Use matrix-vector-multiplication idea

= Run one thread per row of A:

for =1 ... n:
read column j of B into fast memory (B cache)
foreach i =1 ... n run one thread in parallel:
s =0.0
for k=1 ... n:
s += A[i] [k] * B _cache[k][]]
P[1][]3] = s

= Arithmetic intensity:
2n

a=—-7=2

= Not much better ®

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 16
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U  Blocked (Tiled) Matrix Multiplication ‘o

= Remember linear algebra class: the procedure

n
Pij = E aik bij
k=1

works also for sub-blocks of the matrices

n/m
l
Pij = E Ak Byj By
k=1 L
where A, Byj € R™*™ Ak Py

are block matrices of size m

= Assumption: n = multiple of m
= In production code, you'd have to <

cope with any matrix size!

- Lots of nitty-gritty details ...

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 17
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= New approach (2D partitioning): m
—

= For each sub-matrix Pjj, run one
block of m? threads . ————
= Each thread in the block Aik

computes one pj; .
P..

= The kernel runs in phases 1 [ ]
Copy blocksinto T
= Each phase consists of: fast memry B
1. Load blocks Aj, Byjinto shared

/|

memory

- Each thread loads one ajj, one bj;

—_—

2. Perform "row x column" over
block

3. Accumulate partial results

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 18
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= Pseudo code:

let b = n/m // = number of blocks in each dimension
foreach i = 1...b, jJj =1...b run one block in parallel:
let p = 0.0 // = thread-local accumulator
for k=1 ... b:

load sub-matrices A(i,k) and B(k,j) into shared memory
— Asub , Bsub
for 1 =1...m:

p += Asub[tid.x] [1] * Bsub[l][tid.y]

P[I,J] +=p // I,J = per-thread global indices into P
~~
dim3 threadsPerBlock (m,m) ;
dim3 n blocks( n/m, n/m );
multMatrices<<< n blocks, threadsPerBlock >>>( A, B, P, n ); »

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 19
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= Previous optimization is called blocking/tiling (copy optimization)

" How should matrices A and B be stored?

= Remember: at the beginning of each phase: each thread loads one a;; &
one bj;

= Store matrices in blocked form, in order to achieve coalesced
memory access:

Original matrix Reorganized
(numbers are addresses) into blocks
O| 4|8 ]12 Ol 2|8 ]10
1 (5] 9|13 1 (3] 9|11
2| 6 |10|14 4 (6 |12(14
37 |11]15 517 [13]15

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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= Arithmetic intensity:
= P consists of b2 blocks
= For each block Pjj, we load b blocks of A and b blocks of B
= Overall, our algorithm loads 2b3 many blocks

= One block load = m? float loads

| b p— ﬂ
m
3 3
= Overall, our algorithm loads 2(%) m? = 2~ many floats
2n°
= Therefore, a = —5 = m
on’
m

= Consequence: make m large

= Limit: all three blocks Pjj, Ajk, Bkj, must fitin shared memory

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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= Calculating m:

= Assume Kepler-GPU: ~ 2 TFlops/sec = 2:1012 FLOPs/sec
~ 200 GB/sec = 200-10° B/sec

= Choose m such that we achieve peak bandwidth & peak FLOPs/sec

# FLops # Flops/sec 2:1012 Flops/sec
" m=a= = = = 40
# Loads # Loads/sec 2(210 1109 B/sec
R

1 Load = 4 Bytes

= Note: these are very crude estimations, but good for a starting point
where to search for the sweet spot

= Consequence: size of shared memory should be at least
3402 - 4 Bytes = 19.2 kB

= Otherwise, we would be bandwidth limited

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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Y

Effects of Block Size

%]

O
O

G. Zachmann

200
180
160
140
120
100
80
60
40
20

untiled 2x2

Massively Parallel Algorithms

4x4

SS

8x8 12x12 14x14 15x15 16x16

Block size

May 2014

Matrix Algorithms
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DGEMM3.2 +DGEMM 3.1 DGEMM MKL 4 THREADS

Large perf
variance in
cuBLAS 3.1

MKL 10.2.3

PG AR N s
O °"<§’ FE @A Q E
Dimension (m =n =k)

Juration

[ http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance ]

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms

7. cc
VR %

25



eeeeee

Y

Limitations / Optimality

= Tiling/blocking only works, if the arithm. operation is associative

= Arithmetic intensity, a, is bounded by size of shared memory, S:

a~m< §
=3

n3

= Qur algorithm performs O(—) many load operations

VS

= Note: in a sense, our blocked matrix multiplication algorithm is a
way to schedule memory transfers and floating point operations

= Theorem (Hong & Kung, 1981; w/o proof):
Any schedule of conventional matrix multiplication must transfer

O(;;) many floats between slow and fast memory.

= |n this sense, blocked matrix multiplication is optimal

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 26
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U  Strassen's Algorithm ;

= All "traditional" algorithms need O(n3) FLOPs
= Strassen's algorithm: O(n?2-81)
= Recursive algorithm!
= See 2"d semester's course "algorithms and data structures"
= Current world record: O(n2-379)
= Strassen on the GPU?

= Probably not worth it (recursion / complex control flow)

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 27
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U  Recap: Strassen's Algorithm

= Task: compute C=A-B, A, BecR™"
= |dea : divide-and-conquer

= Partition A, B, C in 2x2 block matrices

C11 Ci2) _ (@11 @12\ (bi1 bi2

Co1 C22 a1 anp by1 boo
. nyn
mit a,-j,b,-j,c,-jeR2 2

= Multiplication gives:

C11 = ai1bi1 + ai12b21

Cop = an1bi11 + axoboo

= Which amounts to 8 matrix multiplications of size g X

n
2

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms


Gabriel Zachmann
Optional


eeeeee

" The trick: compute some (seemingly tedious) intermediate products
Q1 = (a11 + az2)(b11 + b22)
Q2 = (821 + a22)b11
Q3 = a11(b12 — b22)
QR4 = azo(—b11 + b21)
Qs = (a11 + ai2)boo
Qe = (—a11 + az1)(b11 + b12)
Q7 = (a12 — a22)(b21 + b22)
" Now we can compute the ¢j's like so:

C11 = Q1+ Q4 — Qs + Q7
Cl2 = Q2 + Q4
C21 = Q3+ Qs
Coo = R1+ Q3 — Q2+ Qs

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 29
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= Computational complexity:
T(n)=7T(2) +cn” € O(n**")

= Assumption here: multiplications are the expensive operation

= How would this perform on a GPU?

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 30
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W  Application: All Pairs Shortest Paths (APSP)

= Given: directed graph G = (V, E) and a distance function

dist: E—-R
where V = set of all vertices (nodes), |V| = n, and E = set of edges

" Goal: compute nxn matrix D = dj; that stores for each pair (v;, vj)
the shortest path from v; to v;in graph G

= Example:

X
T~
—
/
Y
N —
w | o
(08
o | o |
- | »
N |

0
4

412 |1 5]15]10]6

518 (11|11 6|0

Shortest path matrix D

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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Y ' The Adjacency Matrix Representation of Directed Graphs

" The adjacency matrix A represents the distance function dist

= Ais an nxn matrix A = (6;;) where

fdist(v,-, v;), if(vi,v;) € E
5,‘j — < oo, if (V,', VJ) §é E
0, if i = j
1 2 3 4 5
110 3|8 || 4
2|0 0|0 ]| 1|7
4|1 2|0 | 5] 0]
S5|o|o|oo| 6|0

G. Zachmann Massively Parallel Algorithms SS May 2014
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Y  The Shortest Paths Property

= We will now extend the simple, edge-based distance function to
a distance function dist' on paths

= Define
0, 1=y

dist'(py) = {5-- i #J
ij

= Consider a shortest path p¥; from v; to v; such that [pf| < k , i.e,,
p*; can have most k edges

= Let (v}, v)) be the last edge of path p",-j

= Then, there must be a shortest path p,-kl_1 from v;to v; (optimal
substructurel!)

= Therefore,
dist'(pf‘j) = dist'(p5 ') + 0y

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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Y A Simple Algorithm for APSP

= Given the adjacency matrix A, compute a series of matrices
D=A D2, ... D2 D"1 where matrix DX = dist'(pf‘j) contains
lengths of shortest paths in G with at most k edges

= Example:
1 2 3 4 5 1 2 3 4 5
11038 || 4 110|3|8|4]|4
2|0 [0 || 1]7 213|10(6|1|7
3[40 |o0|oo 3|0 4]0]|5(11
42| | 5[0 e 412(5]5|0]|6
5| ||| 6|0 5({8 | |11[{6 |0
Adjacency matrix Matrix D?

= Final matrix D! contains the actual shortest paths in G

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 34
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" The algorithm:

A = adjacency matrix
Dl = A
for k = 2 to n-1:
D* = ExtendPaths (D*!, A)

return Dk

ExtendPaths( D, A )

MatrixMultiply( B, A )

E = e, is an nxn distance matrix C = c;; is an nxn result matrix
for i =1 to n: for i =1 to n:
for j =1 to n: for j =1 to n:
e;; = d;; c..=20

ij
for k =1 to n:
Cijy = C;; + aik'bkj
return C

for k =1 to n:
e;; = min{eij, d, + 6kj)
return D

= Notice the similarity with matrix multiplication!

= We can adapt our fast GPU-based matrix multiplication code to solve
the APSP problem quite easily

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 35
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W A Word on Sparse I\/Iatricqutionm

= Just some remarks

= Frequent case: sparse band matrices
= Represent matrix as a number of vectors

= Devise new parallel algorithm (one thread per row is inefficient)

Matrix 2 vectors
( ‘A H
N¢ N E...E
\ \‘ f k E E
~ 1 i
N

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms
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Optional

= "Unstructured" sparse matrices:

= Most common storage format is Compressed Sparse Row (CSR)

struct {
int n _rows; // number of rows
int nnz; // total number of non-zero elements

int row_start[n rows+l];
int col idx[nnz];
double wval[NNZ];

}

G. Zachmann Massively Parallel Algorithms SS May 2014 Matrix Algorithms 37
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Y Optional St

= Many more kinds of sparse matrices

= Specialized representation / algorithms for each of them?

T T T T T T T T T
it“t.: 3;3 : $
233002 4 4 0 .
o3 *38,, i
10;. N A AR oA
. g
e+ 300::0:“ .o .
20_ : + * + i
e 0% 8 * ¢
K3 3 2 o
PO ”i‘;‘o e
30 - . g.% %303 7
‘? 00’ N ofif:é‘ .
. PRARS 424 e
40 F “oi‘& oi" 3 -
o+ e t.*
" »oﬁ% .’gg . o, . .
50 B ettt e
’&?fgi N L
;:3 A +* 8 .o
60 LT :
030’03 ¥ 3‘0 0”0‘230 i * i:
) . e
0F 0»“ see TN LTt 4
MDD R R OB .
MR : ¢ + % . .
P RS e d ORI .
g0 oi:& 0003% -
‘e o.‘:% +
o seEs e -
.
.o " 28 3%}
100k 1 1 1 1 M 1’ M 1 ’.3’? + |+ “1 m.o;

0 10 20 30 40 a0 60 70 a0 30 100
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U  Summary

= Simple performance models can aid in understanding

= Two ratios are key:

= Arithmetic (computational) intensity = Irﬂggz

- "flops" = floating point operations, "mops" = memory operations

Tflops/sec
GB/sec

= Machine balance =

G. Zachmann Massively Parallel Algorithms SS May 2014
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